
AWS Certified Developer - Associate

Develop and optimize applications on AWS 
Package and deploy by using continuous integration and continuous delivery (CI/CD)
workflows 
Secure application code and data 
Identify and resolve application issues 

Proficiency in at least one high-level programming language 
Understanding of application lifecycle management 
Basic understanding of cloud-native applications to write code 
Ability to develop functional applications 
Experience in using development tools 

Develop and secure applications by using AWS service APIs, the AWS CLI, and SDKs 
Use a CI/CD pipeline to deploy applications on AWS 

Design architectures (for example, distributed systems, microservices, database schemas and
modeling) 
Design and create CI/CD pipelines 
Administer IAM users and groups 
Administer servers and operating systems 
Design AWS networking infrastructure (for example, Amazon VPC, AWS Direct Connect)

Introduction 
The AWS Certified Developer - Associate (DVA-C02) exam is intended for individuals who perform
a developer role. The exam validates a candidate’s ability to demonstrate proficiency in
developing, testing, deploying, and debugging AWS cloud-based applications. 
The exam also validates a candidate’s ability to complete the following tasks: 

Target candidate description 
The target candidate has 1 or more years of hands-on experience in developing and maintaining
applications by using AWS services. 

Recommended general IT knowledge 
The target candidate should have the following: 

Recommended AWS knowledge 
The target candidate should be able to do the following: 

What is considered out of scope for the target candidate? 
The following is a non-exhaustive list of related job tasks that the target candidate is not expected
to be able to perform. These items are considered out of scope for the exam: 

To view a detailed list of specific tools and technologies that might be covered on the exam, in
addition to a list of in-scope AWS services, refer to the Appendix.

(DVA-C02) Exam Guide



AWS Certified Developer - Associate

Multiple choice: Has one correct response and three incorrect responses (distractors) 
Multiple response: Has two or more correct responses out of five or more response options 

Exam content 
Response types 
There are two types of questions on the exam: 

Select one or more responses that best complete the statement or answer the question.
Distractors, or incorrect answers, are response options that a candidate with incomplete
knowledge or skill might choose. Distractors are generally plausible responses that match the
content area. 
Unanswered questions are scored as incorrect; there is no penalty for guessing. The exam
includes 50 questions that will affect your score. 

Unscored content 
The exam includes 15 unscored questions that do not affect your score. AWS collects information
about candidate performance on these unscored questions to evaluate these questions for future
use as scored questions. These unscored questions are not identified on the exam. 

Exam results 
The AWS Certified Developer - Associate (DVA-C02) exam is a pass or fail exam. The exam is
scored against a minimum standard established by AWS professionals who follow certification
industry best practices and guidelines. 
Your results for the exam are reported as a scaled score of 100–1,000. The minimum passing score
is 720. Your score shows how you performed on the exam as a whole and whether you passed.
Scaled scoring models help equate scores across multiple exam forms that might have slightly
different difficulty levels. 
Your score report could contain a table of classifications of your performance at each section
level. This information is intended to provide general feedback about your exam performance. The
exam uses a compensatory scoring model, which means that you do not need to achieve a
passing score in each section. You need to pass only the overall exam. 
Each section of the exam has a specific weighting, so some sections have more questions than
other sections have. The table contains general information that highlights your strengths and
weaknesses. Use caution when interpreting section-level feedback. 

Content outline 
This exam guide includes weightings, test domains, and task statements for the exam. This guide
is not a comprehensive listing of the content on the exam. However, additional context for each of
the task statements is available to help guide your preparation for the exam. The following table
lists the main content domains and their weightings. The table precedes the complete exam
content outline, which includes the additional context. The percentage in each domain represents
only scored content.

(DVA-C02) Exam Guide



AWS Certified Developer - Associate

Architectural patterns (for example, event-driven, microservices, monolithic, choreography,
orchestration, fanout) 
Idempotency 
Differences between stateful and stateless concepts 
Differences between tightly coupled and loosely coupled components 
Fault-tolerant design patterns (for example, retries with exponential backoff and jitter,
deadletter queues) 
Differences between synchronous and asynchronous patterns 

Creating fault-tolerant and resilient applications in a programming language (for example,
Java, C#, Python, JavaScript, TypeScript, Go) 
Creating, extending, and maintaining APIs (for example, response/request transformations,
enforcing validation rules, overriding status codes) 
Writing and running unit tests in development environments (for example, using AWS
Serverless Application Model [AWS SAM]) 
Writing code to use messaging services 
Writing code that interacts with AWS services by using APIs and AWS SDKs 
Handling data streaming by using AWS services 

Event source mapping 
Stateless applications
Unit testing 
Event-driven architecture 
Scalability 
The access of private resources in VPCs from Lambda code

Domain 1: Development with AWS Services 
Task statement 1: Develop code for applications hosted on AWS. 
Knowledge of: 

Skills in: 

Task Statement 2: Develop code for AWS Lambda. 
Knowledge of: 

(DVA-C02) Exam Guide

Domain % of Exam

Domain 1: Cloud Concepts

Domain 2: Security and Compliance

Domain 3: Technology

Domain 4: Billing and Pricing

TOTAL 

26%

25%

33%

16%

100%



AWS Certified Developer - Associate

Configuring Lambda functions by defining environment variables and parameters (for
example, memory, concurrency, timeout, runtime, handler, layers, extensions, triggers,
destinations) 
Handling the event lifecycle and errors by using code (for example, Lambda Destinations,
dead-letter queues) 
Writing and running test code by using AWS services and tools 
Integrating Lambda functions with AWS services 
Tuning Lambda functions for optimal performance

Relational and non-relational databases 
Create, read, update, and delete (CRUD) operations 
High-cardinality partition keys for balanced partition access 
Cloud storage options (for example, file, object, databases) 
Database consistency models (for example, strongly consistent, eventually consistent) 
Differences between query and scan operations 
Amazon DynamoDB keys and indexing 
Caching strategies (for example, write-through, read-through, lazy loading, TTL) 
Amazon S3 tiers and lifecycle management 
Differences between ephemeral and persistent data storage patterns 

Serializing and deserializing data to provide persistence to a data store
Using, managing, and maintaining data stores 
Managing data lifecycles 
Using data caching services 

Identity federation (for example, Security Assertion Markup Language [SAML], OpenID Connect
[OIDC], Amazon Cognito) 
Bearer tokens (for example, JSON Web Token [JWT], OAuth, AWS Security Token Service [AWS
STS]) 
The comparison of user pools and identity pools in Amazon Cognito 
Resource-based policies, service policies, and principal policies 
Role-based access control (RBAC) 
Application authorization that uses ACLs 
The principle of least privilege 
Differences between AWS managed policies and customer-managed policies 

Skills in: 

Task Statement 3: Use data stores in application development. 
Knowledge of: 

Skills in: 

Domain 2: Security 
Task Statement 1: Implement authentication and/or authorization for applications and AWS
services. 
Knowledge of: 

(DVA-C02) Exam Guide



AWS Certified Developer - Associate

Identity and access management (IAM) 

Using an identity provider to implement federated access (for example, Amazon Cognito, AWS Identity
and Access Management [IAM]) 
Securing applications by using bearer tokens 
Configuring programmatic access to AWS 
Making authenticated calls to AWS services 
Assuming an IAM role 
Defining permissions for principals

Encryption at rest and in transit 
Certificate management (for example, AWS Certificate Manager Private Certificate Authority) 
Key protection (for example, key rotation) 
Differences between client-side encryption and server-side encryption 
Differences between AWS managed and customer-managed AWS Key Management Service (AWS KMS)
keys 

Using encryption keys to encrypt or decrypt data 
Generating certificates and SSH keys for development purposes 
Using encryption across account boundaries 
Enabling and disabling key rotation 

Data classification (for example, personally identifiable information [PII], protected health information
[PHI]) 
Environment variables 
Secrets management (for example, AWS Secrets Manager, AWS Systems Manager Parameter Store) 
Secure credential handling 

Encrypting environment variables that contain sensitive data 
Using secret management services to secure sensitive data 
Sanitizing sensitive data 

Skills in:

Task Statement 2: Implement encryption by using AWS services. 
Knowledge of: 

Skills in: 

Task Statement 3: Manage sensitive data in application code. 
Knowledge of: 

Skills in: 

Domain 3: Deployment 
Task Statement 1: Prepare application artifacts to be deployed to AWS. 
Knowledge of: 

(DVA-C02) Exam Guide



AWS Certified Developer - Associate

Ways to access application configuration data (for example, AWS AppConfig, Secrets
Manager, Parameter Store) 
Lambda deployment packaging, layers, and configuration options 
Git-based version control tools (for example, Git, AWS CodeCommit) 
Container images

Managing the dependencies of the code module (for example, environment variables,
configuration files, container images) within the package 
Organizing files and a directory structure for application deployment 
Using code repositories in deployment environments 
Applying application requirements for resources (for example, memory, cores) 

Features in AWS services that perform application deployment 
Integration testing that uses mock endpoints 
Lambda versions and aliases 

Testing deployed code by using AWS services and tools 
Performing mock integration for APIs and resolving integration dependencies 
Testing applications by using development endpoints (for example, configuring stages in
Amazon API Gateway) 
Deploying application stack updates to existing environments (for example, deploying an AWS
SAM template to a different staging environment) 

API Gateway stages 
Branches and actions in the continuous integration and continuous delivery (CI/CD) workflow 
Automated software testing (for example, unit testing, mock testing) 

Creating application test events (for example, JSON payloads for testing Lambda, API
Gateway, AWS SAM resources) 
Deploying API resources to various environments 
Creating application environments that use approved versions for integration testing (for
example, Lambda aliases, container image tags, AWS Amplify branches, AWS Copilot
environments) 
Implementing and deploying infrastructure as code (IaC) templates (for example, AWS SAM
templates, AWS CloudFormation templates) 

Skills in: 

Task Statement 2: Test applications in development environments. 
Knowledge of: 

Skills in: 

Task Statement 3: Automate deployment testing. 
Knowledge of: 

Skills in:

(DVA-C02) Exam Guide



AWS Certified Developer - Associate

Managing environments in individual AWS services (for example, differentiating between
development, test, and production in API Gateway) 

Git-based version control tools (for example, Git, AWS CodeCommit) 
Manual and automated approvals in AWS CodePipeline 
Access application configurations from AWS AppConfig and Secrets Manager 
CI/CD workflows that use AWS services 
Application deployment that uses AWS services and tools (for example, CloudFormation, AWS
Cloud Development Kit [AWS CDK], AWS SAM, AWS CodeArtifact, Copilot, Amplify, Lambda) 
Lambda deployment packaging options 
API Gateway stages and custom domains 
Deployment strategies (for example, canary, blue/green, rolling) 

Updating existing IaC templates (for example, AWS SAM templates, CloudFormation
templates) 
Managing application environments by using AWS services 
Deploying an application version by using deployment strategies 
Committing code to a repository to invoke build, test, and deployment actions 
Using orchestrated workflows to deploy code to different environments 
Performing application rollbacks by using existing deployment strategies 
Using labels and branches for version and release management 
Using existing runtime configurations to create dynamic deployments (for example, using
staging variables from API Gateway in Lambda functions) 

Logging and monitoring systems 
Languages for log queries (for example, Amazon CloudWatch Logs Insights) 
Data visualizations 
Code analysis tools 
Common HTTP error codes 
Common exceptions generated by SDKs 
Service maps in AWS X-Ray 

Debugging code to identify defects 
Interpreting application metrics, logs, and traces 
Querying logs to find relevant data 

Task Statement 4: Deploy code by using AWS CI/CD services. 
Knowledge of: 

Skills in: 

Domain 4: Troubleshooting and Optimization 
Task Statement 1: Assist in a root cause analysis. 
Knowledge of:

Skills in: 

(DVA-C02) Exam Guide



AWS Certified Developer - Associate

Implementing custom metrics (for example, CloudWatch embedded metric format [EMF]) 
Reviewing application health by using dashboards and insights 
Troubleshooting deployment failures by using service output logs 

Distributed tracing 
Differences between logging, monitoring, and observability
Structured logging 
Application metrics (for example, custom, embedded, built-in)

Implementing an effective logging strategy to record application behavior and state 
Implementing code that emits custom metrics 
Adding annotations for tracing services 
Implementing notification alerts for specific actions (for example, notifications about quota
limits or deployment completions) 
Implementing tracing by using AWS services and tools 

Caching 
Concurrency 
Messaging services (for example, Amazon Simple Queue Service [Amazon SQS], Amazon
Simple Notification Service [Amazon SNS]) 

Profiling application performance 
Determining minimum memory and compute power for an application 
Using subscription filter policies to optimize messaging 
Caching content based on request headers

Task Statement 2: Instrument code for observability. 
Knowledge of: 

Skills in: 

Task Statement 3: Optimize applications by using AWS services and features. 
Knowledge of: 

Skills in: 

(DVA-C02) Exam Guide


