The Machine Learning Pipeline on AWS
In this course, you will:
- Select and justify the appropriate ML approach for a given business problem
- Use the ML pipeline to solve a specific business problem
- Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
- Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
- Apply machine learning to a real-life business problem after the course is complete
This course is intended for:
- Developers
- Solutions Architects
- Data Engineers
- Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker
We recommend that attendees of this course have:
- Basic knowledge of Python programming language
- Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
- Basic experience working in a Jupyter notebook environment
Module 0: Introduction
- Pre-assessment
Module 1: Introduction to Machine Learning and the ML Pipeline
- Overview of machine learning, including use cases, types of machine learning, and key concepts
- Overview of the ML pipeline
- Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
- Introduction to Amazon SageMaker
- Demo: Amazon SageMaker and Jupyter notebooks
- Hands-on: Amazon SageMaker and Jupyter notebooks
Module 3: Problem Formulation
- Overview of problem formulation and deciding if ML is the right solution
- Converting a business problem into an ML problem
- Demo: Amazon SageMaker Ground Truth
- Hands-on: Amazon SageMaker Ground Truth
- Practice problem formulation
- Formulate problems for projects
Checkpoint 1 and Answer Review
Module 4: Preprocessing
- Overview of data collection and integration, and techniques for data preprocessing and visualization
- Practice preprocessing
- Preprocess project data
- Class discussion about projects
Checkpoint 2 and Answer Review
Module 5: Model Training
- Choosing the right algorithm
- Formatting and splitting your data for training
- Loss functions and gradient descent for improving your model
- Demo: Create a training job in Amazon SageMaker
Module 6: Model Evaluation
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Initial project presentations
Checkpoint 3 and Answer Review
Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
- Practice feature engineering and model tuning
- Apply feature engineering and model tuning to projects
- Final project presentations
Module 8: Deployment
- How to deploy, inference, and monitor your model on Amazon SageMaker
- Deploying ML at the edge
- Demo: Creating an Amazon SageMaker endpoint
- Post-assessment
- Course wrap-up
Class Deliverables
- Amazon Authorised Instructors
- Official AWS Content
- Hands-on labs (*where available)
- Class completion certificates
- Exam Prep sessions
Dates Available - Click on Book Now to proceed
Virtual | 4 days | All Day | September 16, 2024 | ₹60,000 | |
Virtual | 4 days | All Day | September 24, 2024 | ₹60,000 | |
Virtual | 4 days | All Day | October 8, 2024 | ₹60,000 | |
Virtual | 4 days | All Day | October 28, 2024 | ₹60,000 | |
Virtual | 4 days | All Day | November 12, 2024 | ₹60,000 | |
Virtual | 4 days | All Day | November 26, 2024 | ₹60,000 |
Don't see a date that works for you?
Fill in the form below to let us know.
Popular Courses
This course is designed for individuals with little to no experience on the AWS Cloud. The learners will learn about AWS Cloud concepts, AWS services such as Security, AWS Architecture, Pricing and Support to develop their knowledge on the AWS Cloud.
You will learn how to use a combination of DevOps best practices and tools to support your organization’s capability to develop, deliver and maintain applications and services at a high velocity on the AWS cloud.
The course explores the usage of the iterative Machine Learning (ML) pipeline to solve real-world business problems in a project-based environment. You will learn about each phase of the pipeline from an experienced AWS instructor.
FAQs
To enroll in this course, choose the starting date and make an online payment. Once your payment is confirmed, our team will reach out to you.
Wire Transfer, Credit Card, Debit Card, UPI & Purchase Order.
There is no minimum number of candidates required, we are happy to train 1 to 1 . With regards to the maximum number, we can accomodate 30 learners in one batch.
- Training Delivered by an Amazon Authorized Instructor.
- AWS Content E-Kit
- Hands-on-labs for 30 days
- Class attendance certificate
You will get the access to course content & lab on first day of your training session.
The course Completion Certificate will be issued to your email id within 2 weeks of completing your course.
A one-day course could be delivered over two half day sessions (4 hours a day), or a three-day course could be delivered over five days (4 hours a day)