The Machine Learning Pipeline on AWS
In this course, you will:
- Select and justify the appropriate ML approach for a given business problem
- Use the ML pipeline to solve a specific business problem
- Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
- Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
- Apply machine learning to a real-life business problem after the course is complete
This course is intended for:
- Developers
- Solutions Architects
- Data Engineers
- Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker
We recommend that attendees of this course have:
- Basic knowledge of Python programming language
- Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
- Basic experience working in a Jupyter notebook environment
Module 0: Introduction
- Pre-assessment
Module 1: Introduction to Machine Learning and the ML Pipeline
- Overview of machine learning, including use cases, types of machine learning, and key concepts
- Overview of the ML pipeline
- Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
- Introduction to Amazon SageMaker
- Demo: Amazon SageMaker and Jupyter notebooks
- Hands-on: Amazon SageMaker and Jupyter notebooks
Module 3: Problem Formulation
- Overview of problem formulation and deciding if ML is the right solution
- Converting a business problem into an ML problem
- Demo: Amazon SageMaker Ground Truth
- Hands-on: Amazon SageMaker Ground Truth
- Practice problem formulation
- Formulate problems for projects
Checkpoint 1 and Answer Review
Module 4: Preprocessing
- Overview of data collection and integration, and techniques for data preprocessing and visualization
- Practice preprocessing
- Preprocess project data
- Class discussion about projects
Checkpoint 2 and Answer Review
Module 5: Model Training
- Choosing the right algorithm
- Formatting and splitting your data for training
- Loss functions and gradient descent for improving your model
- Demo: Create a training job in Amazon SageMaker
Module 6: Model Evaluation
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Initial project presentations
Checkpoint 3 and Answer Review
Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
- Practice feature engineering and model tuning
- Apply feature engineering and model tuning to projects
- Final project presentations
Module 8: Deployment
- How to deploy, inference, and monitor your model on Amazon SageMaker
- Deploying ML at the edge
- Demo: Creating an Amazon SageMaker endpoint
- Post-assessment
- Course wrap-up
Class Deliverables
- Amazon Authorised Instructors
- Official AWS Content
- Hands-on labs *(if available)
- Class completion certificates
- Exam Prep sessions
Class Schedule
Stay ahead with our comprehensive course schedule. Browse upcoming training sessions & reserve your spot to gain hands-on expertise & certification-ready skills.
Virtual | 4 days | All Day | January 14, 2025 | ₹60,000 | |
Virtual | 4 days | All Day | January 28, 2025 | ₹60,000 | |
Virtual | 4 days | All Day | February 4, 2025 | ₹60,000 | |
Virtual | 4 days | All Day | February 18, 2025 | ₹60,000 | |
Virtual | 4 days | All Day | March 4, 2025 | ₹60,000 | |
Virtual | 4 days | All Day | March 18, 2025 | ₹60,000 |
Popular Courses
Explore our top-rated courses designed to elevate your cloud expertise. From foundational skills to advanced certifications, discover the perfect program to accelerate your career in cloud computing and beyond.
This course is designed for individuals with little to no experience on the AWS Cloud……
The course, through a series of real life scenarios & hands-on learning, teaches to identify services and……
You will learn how to use a combination of DevOps best practices and tools to support…..
The course explores the usage of the iterative (ML) pipeline to solve real-world business problems in a…..
This course is designed to introduce generative AI to software developers interested in leveraging…..
FAQs
Find answers to commonly asked questions about our courses, certifications, schedules, and more.
Your cloud learning journey made simple and transparent.
To enroll in this course, choose the starting date and make an online payment. Once your payment is confirmed, our team will reach out to you.
Wire Transfer, Credit Card, Debit Card, UPI & Purchase Order.
There is no minimum number of candidates required, we are happy to train 1 to 1 . With regards to the maximum number, we can accomodate 30 learners in one batch.
- Training Delivered by an Amazon Authorized Instructor.
- AWS Content E-Kit
- Hands-on-labs for 30 days
- Class attendance certificate
You will get the access to course content & lab on first day of your training session.
The course Completion Certificate will be issued to your email id within 2 weeks of completing your course.
A one-day course could be delivered over two half day sessions (4 hours a day), or a three-day course could be delivered over five days (4 hours a day)
FAQs
Find answers to commonly asked questions about our courses, certifications, schedules, and more.
To enroll in this course, choose the starting date and make an online payment. Once your payment is confirmed, our team will reach out to you.
Wire Transfer, Credit Card, Debit Card, UPI & Purchase Order.
There is no minimum number of candidates required, we are happy to train 1 to 1 . With regards to the maximum number, we can accomodate 30 learners in one batch.
- Training Delivered by an Amazon Authorized Instructor.
- AWS Content E-Kit
- Hands-on-labs for 30 days
- Class attendance certificate
You will get the access to course content & lab on first day of your training session.
The course Completion Certificate will be issued to your email id within 2 weeks of completing your course.
A one-day course could be delivered over two half day sessions (4 hours a day), or a three-day course could be delivered over five days (4 hours a day)